USN

18CS54

Fifth Semester B.E. Degree Examination, Jan./Feb. 2021 Automata Theory and Computability

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Define the following with example:
 - i) String ii) Language iii) Alphabet iv) Symbol

(04 Marks)

- b. Design a DFSM to accept each of the following language:
 - i) $L = \{w \in \{a, b\}^*; w \text{ has all strings that ends with sub string abb }\}$
 - ii) $L = \{w; \text{ where } |w| \text{ mod } 3 = 0 \text{ where } \Sigma = \{a\}\}$
 - iii) $L = \{w \in \{a, b\}^* \text{ every a region in } w \text{ is of even length.} \}$

(09 Marks)

c. Construct an equivalent DFA from the following given NFA using subset construction method. (Refer Fig.Q.1(c)) (07 Marks)

OR

2 a. Construct a minimum state automation equivalent to the FA given table

States	0	1
$\rightarrow q_0$	q_1	q_5
q_1	q_6	q_2
Q 2	q_0	q_2
q_3	q_2	q_6
q_4	q_7	q_5
q_5	q_2	q_6
q_6	q_6	q_4
q_7	q_6	q_2

(10 Marks)

b. Consider the following NFA with ∈-moves construct on equivalent DFA.

(10 Marks)

Fig.Q.2(b)

Module-2

- 3 a. Define Regular expression. Write RE for the following languages:
 - i) $L = \{a^n b^m | m + n \text{ is even}\}\$
 - ii) $L = \{a^n b^m | m \ge 1 \ n \ge 1 \ nm \ge 3\}$
 - iii) $L = \{a^{2n}b^{2m} | n \ge 0, m \ge 0\}$

(10 Marks)

b. Construct an \in - NFA for the regular expression 0 + 01

(05 Marks)

c. Construct on FA for the regular expression $10 + (0 + 11)0^*1$

State and prove pumping lemma theorem for regular languages.

(05 Marks)

(08 Marks)

b. Prove that $L = \{a^p | p \text{ is a prime}\}\$ is not a regular.

(08 Marks)

c. List out closure properties of regular sets.

(04 Marks)

Module-3

OR

- 5 a. Define CFG. Write a CFG to specify
 - i) all string over {a, b} that are even and odd palindromes.
 - ii) $L = \{a^n b^{2n} \text{ over } \Sigma = \{a, b\} n \ge 1\}$

(10 Marks)

- b. Write the procedure for removal of \in -productions. Simplify the following grammar.
 - $S \rightarrow aA \mid aBB$
 - $A \rightarrow aAA \mid \in$
 - $B \rightarrow bB \mid bbC$
 - $C \rightarrow B$

4

(10 Marks)

OR

- 6 a. Define PDA. Design a PDA for the language that accepts the string with $n_a(w) < n_b(w)$ where $w \in (a + b)^*$ and show the instantaneous description of the PDA on input abbab.
 - (10 Marks)
 - b. What is CNF and GNF? Convert the following grammar into GNF
 - $S \rightarrow AA \mid a$

 $A \rightarrow SS|b$

(10 Marks)

Module-4

7 a. With a neat diagram, explain variant of turning machine.

- (10 Marks)
- b. Construct a Turning machine that accept the language 0^n , 1^n where n > 1 and draw transition graph for Turning Machine. (10 Marks)

OR

8 a. Define Turning Machine with its tuples.

(04 Marks)

b. Explain the working principle of Turning Machine with diagram. Design a Turing Machine to accept strings formed on $\{0, 1\}$ and ending with 000. Write transition diagram and ID for w = 101000.

(16 Marks)

Module-5

9 a. Explain restricted turing machines.

(08 Marks)

- b. Explain the following with example:
 - i) Decidability
- ii) Decidable languages
- iii) Undecidable languages.

(12 Marks)

OR

- Write a short note on:
 - a. Post correspondence problem
 - b. Halting problems in Turning Machine
 - c. Linear Bound Automation (LBA)
 - d. Classes of P and NP

(20 Marks)

* * * * *